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Executive Summary 
Negative Emission Technologies and Practices (NETPs) are intricate systems which aim to reduce the 
amount of CO₂ present in the atmosphere and are an essential component to achieve the targets of 
the Paris Agreement. For NETPs to achieve their intended purposes, they must demonstrably remove 
more CO2 than they emit greenhouse gas (GHGs) in the process of doing so. However, proving the 
realisation of this objective is complicated by their temporal and spatial nature. For all NETPs, the 
quantification of their overall net impact on the climate system presents a challenge because of their 
varying energy and material inputs, as well as the inherent difficulty of monitoring storage over 
extended periods of time. Moreover, NETPs which cross jurisdictional boundaries present an 
additional challenge due to the nature of existing GHGs accounting frameworks, which attribute 
responsibility for emissions and removals on a territorial basis.  
 
Projects which cross territorial boundaries may therefore fail to fully account for the net climate 
impact due to unharmonized standards and monitoring. At the same time, countries only report part 
of the overall NETP system in their own national inventories. The superposition of difficult-to-quantify 
NETPs systems along with the truncated nature of global GHGs accounting will make it difficult to 
identify and quantify the real-life net removal of such projects.  
 
Policy relevant messages: 
 
Adopt a robust definition of carbon dioxide removal (CDR), which includes:  

• physical extraction of CO₂ from the atmosphere, the permanent storage of that CO₂, and the 
accounting for all associated emissions in the extraction and storage processes and associated 
supply chains so that only net removal is considered CDR. 

• a definition of permanence that, at minimum, aligns with the physical lifespan of CO₂ in the 
atmosphere, 300-1000 years. 

• accurate and usable methodologies to measure and monitor greenhouse gas flows 
 
Implement guardrails for NETP deployment, including: 

• explicit CDR targets that sit on top of emission reduction targets 

• strict sustainability criteria for biomass, energy, land, water, and other resources used in a 
NETP system 

• near term, deploy NETP systems with short supply chains, that minimise geographic and 
temporal distance between extractions, storage, and associated emissions, as well as for NETP 
systems with geological storage that has a low risk of reversal. 

 
Address gaps in CDR life cycle accounting, including the need for: 

• a mandate that only “cradle-to-grave” system boundaries are acceptable for LCA of NETP 

systems 

• ensuring all carbon that enters the system is accounted for from source to sink—carbon 

balances should always close, 

• separate accounting of emissions, extractions, removals, and avoided emissions 

• separate accounting of CO₂ stored in biological sinks and CO₂ stored in geological sinks 

 
Address gaps in territorial accounting, including the need for: 

• explicit treatment of non-biological methods of extracting of CO₂ from the atmosphere 

• explicit treatment of non-geological storage of CO₂ 



 
 

 5 

• explicit separation of reporting of emissions, extractions, and storage of CO₂, instead of 

reporting net changes in flows or stock 

 
Maintain rigour when merging CDR life cycle accounting with territorial accounting: 

• all associated emissions of the extraction and storage processes, including intermediate 

transport and conversion and upstream supply chains 

• uniformly high quality of methodologies used for accounting extraction, storage, and 

associated emissions 

• liability for reversals and leakage, regardless of when or where they occur 

• minimum acceptable CDR efficiencies, to reduce the risk of “false CDR”, where a CDR 

system, due to unexpected impacts, or incomplete accounting, leads to an increase in 

atmospheric greenhouse gas emissions 
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1 Introduction 

The urgency and scale of the climate crisis requires not only the rapid and immediate reduction of 

greenhouse gas emissions, but also the large-scale removal of greenhouse gases, specifically CO₂, 

from the atmosphere. The most recent IPCC report on climate change identifies three sequential 

roles of carbon dioxide removal in mitigating catastrophic climate change (Figure 1) 

1. As a supplement to rapid and massive reductions in emissions, thus accelerating net 

reductions and decreasing the speed of global warming. 

2. As a means to balance remaining emissions of fossil CO₂ and non-CO₂ greenhouse gases to 

maintain “net zero”, thus stabilising the amount of greenhouse gases in the atmosphere. 

3. As a means to achieve a “net negative” society, where the amount of greenhouse gases in 

the atmosphere decreases.  

 

 
Figure 1. The three sequential roles of carbon dioxide removal in mitigating catastrophic climate change1  
 

 

To generate carbon dioxide removal, also known as negative emissions, an activity must meet four 

minimum criteria, as summarized by Tanzer and Ramirez (2019)2, namely: 

 
1 Stylized rendering from Bellona (2022). The Carbon Credits Conundrum. 

https://network.bellona.org/content/uploads/sites/3/2022/08/THE-CARBON-CREDITS-CONUNDRUM-1.pdf. And adapted from 

IPCC (2022). Mitigation of Climate Change Summary for Policymakers Climate Change 2022 Working Group III contribution to the Sixth 
Assessment Report of the Intergovernmental Panel on Climate Change. 
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf   
2 Tanzer, S.E., Ramírez, A. (2019). When are negative emissions negative emissions? Energy & Environmental Science, 12. 

http://doi.org/10.1039/C8EE03338B  

https://network.bellona.org/content/uploads/sites/3/2022/08/THE-CARBON-CREDITS-CONUNDRUM-1.pdf
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf
http://doi.org/10.1039/C8EE03338B
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Physical extraction: Physical greenhouse gases are removed from the atmosphere. 

Permanent storage: The removed gases are stored out of the atmosphere in a manner 

intended to be permanent.  

Complete accounting of associated emissions: Upstream and downstream greenhouse gas 

emissions associated with the removal and storage process, such as biomass origin, energy 

use, gas fate, and co-product fate, are comprehensively estimated and included in the 

emission balance. 

Net removal: The total quantity of atmospheric greenhouse gases removed and 

permanently stored is greater than the total quantity of greenhouse gases emitted to the 

atmosphere. 

There are many available pathways that could potentially result in negative emissions (Figure 2) by 

extracting and storing atmospheric carbon. However, large scale removal of carbon dioxide from the 

atmosphere is a complex task that currently has many uncertainties. A fundamental concern is “how 

much carbon dioxide removal can we accomplish, both annually and cumulatively?”, which in turn 

informs what is the allowable quantity of residual emissions in a net-zero world. The future 

availability of negative emission technologies and practices (NETP) is dependent on groundwork laid 

now to ensure the technical availability of NETP system components such as sustainable biomass, 

renewable energy, CO₂ transport and storage; systems for physically monitoring and measuring the 

extraction, emission, and storage of greenhouse gases; accurate models that can be used to 

estimate the behaviour of NETPs over time and their interactions with the environment; and robust 

policies to incentivise NETP development and prevent the misuse of resources or incomplete 

accounting of when net removal occurs. 

 

 
Figure 2. Carbon dioxide removal, or “negative emissions” is the physical, permanent, and net removal of greenhouse 
gases from the atmosphere. 
A variety of options to remove and store atmospheric CO₂ are available but ensuring that these activities result in true CDR requires 
managing storage to prevent or compensate for any potential re-emissions, and to ensure that the quantification of CDR accounts for 
the greenhouse gas emissions in the removal and storage processes and their supply chains.  
Source: IPCC AR6 WGIII, Chapter 12 (Box 8, Figure 1)  
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This paper is part of that basic research, conducted under the Horizon 2020 NEGEM project, whose 

goal is to assess the potential available scale of negative emissions possible with different NETPs and 

concerns relevant to their implementation at scale. A first complexity is that NETPs are diverse and 

often involve complex supply chains. Extraction, transport, and storage of CO₂ may occur in different 

jurisdictions, and production and transport of material and energy inputs may be further dispersed.  

A second complexity, of critical policy concern, is the issue of greenhouse gas accounting. For NETPs, 

accounting has a dual role: first, it must provide an accurate assessment of the flows of greenhouse 

gases entering and exiting the atmosphere, so as to assess whether and how much a NETP actually 

results in negative emissions; and second, its potential future role in long term climate plans 

assesses whether responsible parties, such as nation states, are fulfilling their obligations to reduce 

their climate impacts. Carbon accounting measures both physical flows of carbon (and other 

greenhouse gases) and actions actors take to discharge of responsibility to minimise their net 

greenhouse gas emissions. To do so accurately and fairly requires: 

Clear definitions and metrics of what carbon/GHG flows and actions need to be measured 

and when a removal can be claimed to have occurred.  

Clear methodologies with a scientifically-sound basis of how to measure physical flows of 

carbon and other greenhouse gases in the extraction and storage processes and in the 

associated supply chains, including those occurring in disperse locations, over time, such as 

in transboundary supply chains. 

Clear jurisdiction that defines who is responsible for conducting and reporting the 

measurement. 

Clear liability that defines who is responsible for removals and emissions that occur at 

different locations and timespans, such as in transboundary supply chains. 

These accounting issues are particularly relevant in light of the proliferation of “net zero” 

greenhouse gas targets set by national actors, as “net zero” implies that some quantity of carbon 

dioxide removal will be used to balance out residual emissions and in fulfilment of international 

agreements, such as the nationally determined contributions (NDCs) of the Paris agreement. This 

then further requires international agreement on accounting standards for carbon dioxide removal. 

While existing accounting frameworks for territorial greenhouse gas emissions exist, such as the 

IPCC guidelines for national greenhouse gas inventories, there is no international or domestic 

comprehensive accounting framework for carbon dioxide removals, though there are increasingly 

urgent calls3 for framework development and harmonisation.  Furthermore, NETPs that involve the 

transboundary transport of biomass or CO₂ create additional complications, as the emissions and 

removals may be accounted for differently in different jurisdictions. 

To understand the challenges of accounting and governance specific to the large-scale deployment 

of NETPs, we assess what must be accounted for across different NETPs supply chains; evaluate 

existing relevant accounting frameworks; provide special attention to existing regulation for 

 
3 E.g.,  

Peters, G., Geden, O. Catalysing a political shift from low to negative carbon. Nature Clim Change 7, 619–621 (2017). 

https://doi.org/10.1038/nclimate3369 

Tamme E and Beck LL (2021) European Carbon Dioxide Removal Policy: Current Status and Future Opportunities. Front. 

Clim. 3:682882. https://doi.org/10.3389/fclim.2021.682882 

Asbjørn Torvanger (2018): Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris 

agreement, Climate Policy, https://doi.org/10.1080/14693062.2018.1509044   

https://doi.org/10.1038/nclimate3369
https://doi.org/10.3389/fclim.2021.682882
https://doi.org/10.1080/14693062.2018.1509044
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transboundary accounting of biomass flows and CO₂ storage; and then illustrate how different NETPs 

would be accounted for under different frameworks and NETP-specific concerns. Finally, we provide 

a summary of identified accounting gaps and recommendations for next steps in research and policy 

development. 

Note that this paper focuses on the accounting concerns of transboundary NETP governance. It is 

not the intention of this paper to evaluate whether and which NETPs are suitable for large scale 

deployment, and the inclusion of any technology here should not be interpreted as an endorsement 

or condemnation. Nor does this paper consider the many other non-accounting concerns of NETP 

governance such as ensuring environmental and social justice or optimising resource use. Finally, 

this paper does not consider the creation or trading of carbon credits between nations or non-state 

actors, for which a robust and harmonised accounting framework is also a prerequisite. 

 

  



 
 

 12 

 

2 WHY NETP SYSTEMS ARE COMPLICATED 

Negative emissions require both the physical extraction of CO₂ from the atmosphere and permanent 

storage of that atmosphere CO₂. NETPs vary in how they achieve this (Table 1). Atmospheric CO₂ can 

be extracted biologically (e.g., the photosynthesis of biomass), geologically (e.g., the weathering or 

carbonation of rocks), or chemically (e.g., amines and other solvents and sorbents). Once extracted, 

that CO₂ can be stored geologically (e.g., in minerals, as dissolved minerals, or injected into 

underground formations) or biologically (e.g., in standing biomass, soil, or buried biomass). 

To achieve their purpose of reducing the amount of greenhouse gases in the atmosphere, NETPs 

must permanently store more atmospheric CO₂ than greenhouse gases they emit in the process of 

extraction and storage and associated supply chains (e.g., transport, energy provision, material 

construction, etc.). It is only the net amount of atmospheric CO₂ removed—the amount stored that 

exceeds the associated emissions—that can be counted as a reduction of atmospheric GHGs. 

Therefore, accurately accounting for the greenhouse gas flows in an NETP system requires tracing 

both: 

• Flows of carbon extraction and storage, including 

o when and where the CO₂ is extracted from the atmosphere 

o losses of CO₂ that occur between extraction and storage, such as in transport or 

during conversion of the carbon from one form to another 

o when and where the extracted CO₂ is permanently stored 

o any movement or re-release of CO₂ after it has been stored 

• All associated greenhouse gas emissions (Table 1), including 

o the emissions associated with the supply chains providing land, material, energy, 

service, and infrastructure inputs into the extraction, transportation, conversion, 

and storage processes 

o the emissions associated with monitoring and maintaining the CO₂ storage 

o emissions from indirect land use change and other indirect impacts 

The accounting of CDR potential across the wide range of NETPs can be complex. In particular, the 

timing of associated emissions, the monitorability of removals and storage, and the overall “removal 

efficiency”—the ratio of CO₂ removed to greenhouse gases emitted—can vary widely, as 

summarized in TABLE. Robust and comprehensive accounting is needed to avoid overcounting 

extraction and storage, undercounting associated emissions, or discounting the risk of storage 

reversal, and thus risking an increase in global warming in the name of “negative emissions”. These 

issues further increase in complexity when NETP systems cross national boundaries and are subject 

to multiple jurisdictions and multiple accounting systems. 



 
 

 13 

Table 1. Overview of selected NETPs 

NETP  Atmospheric CO₂ is… Timing of associated emissions1 Gap between 
extraction and 
storage 

Monitorability 
of Storage  

Risk of CO₂ 
re-release  

Estimated 
removal 
efficiency over 
1000 years (100 
years 

extracted via  stored in  Before 
Extraction 

During 
Extraction 

Between 
Extraction and 
Storage 

During Storage 
Process 

After Initial 
Storage 

BioCCS, in which CO₂ produced from 
the combustion or other use of 
biomass is captured and permanently 
stored, e.g., in a geological formation 

Photosynthesis  Geologic 
Formations  

Land 
preparation 

Decomposition, 
maintenance, 
fertiliser use 

Harvest, 
Transport, 
biomass 
processing CO₂ 
capture, 
compression, 
transport, losses, 
energy use 

energy use, 
injection losses 

Leakage (low risk) Yes, requires 
transport and 
conversion of 
biomass and 
then transport 
and injection of 
CO₂ 

High  Low  78-87% 
(52-89%) 

DACCS, The use of fans, chemicals, 
and energy to extract atmospheric 
CO₂ into a solvent or sorbent, after 
which it is transported and stored 
permanently, e.g., in a geological 
formation 

Chemicals  Geologic 
formation  

 Fans, CO₂ 
capture 

CO₂ capture, 
compression, 
energy use, 
transport, losses 

energy use, 
injection losses 

Leakage (low risk) Yes, requires 

transport and 

injection of CO₂. 

Possibility of co-

location near 

storage site. 

High  Low  -5-100% 

(-5-100%) 

Afforestation, The deliberate 
cultivation of long-term biomass 
stocks that are indefinitely 
maintained.  

Photosynthesis  Standing 
biomass  

Forest 
preparation 

Forest 
maintenance, 
decomposition 

n.a. Maintenance, 
decomposition, 
monitoring 

Re-release from 
dieback or 
mismanagement 
(high risk) 

No Medium  High  31-95% 
(63-99%) 

Enhanced Weathering, Ground 
silicate minerals spread on large 
surfaces to increase their rate of CO₂ 
dissolution to a period of years or 
decades.  

Weathering  Dissolved 
minerals  

Mining, 
grinding, 
transport, 
spreading 

n.a. n.a. n.a.  No, but speed 
of extraction is 
low 

Low  Low, 
uncertain  

51-92% 
(17-92%) 

Biochar, Pyrolysed biomass, which is 
then buried or used as a soil 
amendment. 

Photosynthesis  Pyrolysized 
biomass  

Land 
preparation 

Decomposition, 
maintenance, 
fertiliser use 

Transport, 
biomass 
processing, 
pyrolysis, 
transport, losses, 

repurposing 

Spreading, 
Decomposition 

Decomposition,  Yes, requires 
transport and 
conversion of 
biomass and 
then transport 

and spreading 
of biochar 

Low  Medium  -3-5% 
(20-39%) 

1: Excluded for clarity: construction of infrastructure and associated land use change 
2: Chiquier et al (2022) A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & Environmental Science. https://doi.org/10.1039/D2EE01021F 

https://doi.org/10.1039/D2EE01021F
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3 OVERVIEW OF RELEVANT ACCOUNTING PRACTICES 

Greenhouse gas accounting serves a dual purpose. The first is to track physical flows of greenhouse 

gases as they move between human activity, the atmosphere, and terrestrial sinks. The second is to 

assign responsibility for managing these flows to competent entities such as governments, 

corporations, or individuals. By comparing changes in physical flows over time, it is possible to assess 

whether the assigned entities are fulfilling their responsibilities (e.g., meeting their stated climate 

change mitigation commitments).  

3.1 Greenhouse gas accounting for nations 
There are multiple ways to allocate emissions between sovereign regions4 (Figure 3). Some are:  

• Territorial accounting (sometimes also called “production-based accounting”) attributes to a 

nation or other sovereign region the greenhouse gas emissions that occur within the borders 

of a region for a given timeframe, such as annually or cumulatively.  

• Consumption-based accounting attributes to a nation the emissions associated with the 

final consumption of goods and services by that nation’s residents, regardless of where the 

emissions occurred. It also excludes domestic emissions from exported goods and services.  

• Less commonly seen, Production-based accounting attributes to a nation the greenhouse 

gas emissions that occur due to the economic output of the nation’s residents, both private 

and corporate. This includes both emissions that occur domestically, but also those that 

occur internationally due to the economic activity of the residents. It also excludes emissions 

occurring domestically due to the economic activity of non-residents. 

  

  
 Figure 3. Different ways of accounting for a nation’s emissions.5 

 
4 EEA (2013). European Union CO₂ emissions: different accounting perspectives. Technical Report No. 20/2013. 

https://www.eea.europa.eu/publications/european-union-co2-emissions-accounting  
5 Image source: Our World in Data (2020). https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions Used under a CC-BY open 

access lisence. 

https://www.eea.europa.eu/publications/european-union-co2-emissions-accounting
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
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Territorial accounting is the foundation of the national greenhouse gas inventories established by 

the UNFCCC that are used as the basis for international negotiation and commitments for climate 

change mitigation. The methodology for these inventories, the IPCC guidelines for national 

greenhouse gas inventories, was first established in 1994, with revisions in 1996, 2006 and most 

recently refined in 2019, covers emissions from energy production and transport, industrial 

processes and product use; agriculture, forestry; and waste, each divided into numerous subsectors. 

Emissions (and extractions) are accounted for by totalling emissions from each subsector. 

The greenhouse gases accounted for include carbon dioxide, methane, nitrous oxide, 

hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride, nitrogen trifluoride, trifluoromethyl 

sulphur pentafluoride, halogenated ethers, and other halocarbons6. Carbon dioxide, methane, and 

nitrous oxide are presented in their absolute emission quantity, whereas other gases are 

characterized by their “CO₂ equivalent” global warming potential.  

The IPCC guidelines focus not on direct measurement of emissions, but uses indirect estimation 

calculated using standardised emission factors applied to data on fuel consumption; industrial, 

agricultural, and forestry production output; animal stocks; land use change; and population. Three 

levels of accounting are presented in the framework, to be used based both on the available 

resources a nation has to conduct the accounting as well as the perceived contribution of that 

sector’s emissions to the overall emission balance. This in turn leads to differences in methodology 

used, and completeness of emissions from country to country. 

The IPCC accounting system focuses on nation’s domestic anthropogenic emissions, and has some 

explicit gaps, namely emissions from international sea and air transport (which are counted, but not 

assigned to a national inventory) or multilateral military operations (international emissions) and 

emissions from fires on unmanaged land (not considered anthropogenic), as well as non-GHG 

contributors to global warming (e.g., changes in albedo). It does have specific treatment of carbon 

extraction by biomass, as well as geologic storage of CO₂, both of which are components of multiple 

NETPs. These are discussed in further detail below. 

  

3.2 Greenhouse gas accounting for NETP systems 
Impacts or processes from all parts of a NETP system will not necessarily take place in a single nation 

or in a single year, and thus cannot whether or not a NETP system results in net removal cannot be 

clearly evaluated using the IPCC territorial accounting framework. NETPs requires life cycle 

assessment to fully account for the greenhouse gas emissions—and other environmental impacts—

associated with the removal and storage processes and their supply chains, wherever and whenever 

they occur. 

Life cycle assessment (LCA) is a “compilation and evaluation of the inputs and outputs and the 

potential environmental impacts of a product system throughout its life cycle” (ISO 14040), from the 

extraction of resources used in the supply chains of energy, materials, and services used to produce 

a product or service; the use of that product itself; and the final fate of the product and any wastes 

produced. An inventory of the environmental flows is used to calculate environmental impacts. For 

 
6 IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 1, Chapter 1. https://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_1_Ch1_Introduction.pdf  

https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_1_Ch1_Introduction.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_1_Ch1_Introduction.pdf
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GHG accounting for CDR, this focuses on greenhouse gases extracted from and emitted to the 

atmosphere. Two main types of LCA exist7: 

Attributional life cycle assessment seeks to answer the question of “Of all the global 

environmental impacts that occur, which can be attributed to this product/service?” 

Attributional LCA allocates to a product (or service) a fraction of global environmental 

impacts that are estimated to be associated with its production, use, and disposal. 

Attributional LCA assumes the world is static and typically makes use of average data (e.g., 

grid average emission intensity of energy production). For processes that produce more than 

one product or service (“multi-functional processes”), attributional LCA must divide the 

associated impacts between the different outputs.  

Consequential life cycle assessment seeks to answer the question of “If the demand for this 

product/services changes, what are the resulting changes in global environmental impacts? 

Consequential LCA estimates the change in global environmental impacts that would 

occur—both directly and indirectly—if a product (or service) is produced, used, and 

disposed. Consequential LCA there requires assuming a counterfactual baseline (i.e., what 

would have happened in the absence of a change). Typically, consequential LCA uses 

marginal data (e.g., the emission intensity of additional capacity for electricity production), 

and includes co-products and indirect impacts (e.g., changes in land use, demand, or 

production in other sectors).  

All LCAs follow the same overarching framework, which is detailed in ISO14040: 

Goal and Scope Definition which defines the objective, reference flow, system boundaries, 

and the geographic, temporal, and technological scope of the study. Of particular concern 

for NETPs is the selection of system boundaries (Figure 4), which determines what processes 

of a system are accounted for. Inadequate boundary selection can lead to underestimation 

of associated impacts, incorrect estimation of net removal, or neglecting re-release of stored 

carbon. For NETP systems, the only appropriate system boundary choice is the broadest one 

“cradle-to-grave”, that follows all flows from resource extraction to their final fate for all 

NETP processes and associated supply chains. 

Inventory Analysis, which catalogues the economic and environmental flows in the product 

systems. Economic flows include the flows of material and energy between unit processes 

(e.g., electricity, steel, harvested biomass CO₂ to storage), whereas environmental flows are 

those between unit processes and land, water, or air (e.g., extraction of fossil fuels, nitrogen 

run off, emissions of CO₂ to air).  

Impact Assessment, where the systems’ environmental effects are evaluated using a 

framework of environmental impact harmonization and quantification. For life cycle 

accounting of greenhouse gas emissions, for example, the emissions flows are characterized 

into a their “CO₂ equivalent” global warming potential for a given timeframe (e.g., 100 

years). Besides global warming, other impacts considered may be human toxicity, 

ecotoxicity, acidification, eutrophication, land use, water depletion, abiotic resource 

depletion, ozone depletion, among others. While greenhouse gas accounting for NETPs 

 
7 UNEP (2011). Global Guidance Principles For Life Cycle Assessment Databases. https://www.lifecycleinitiative.org/wp-

content/uploads/2012/12/2011%20-%20Global%20Guidance%20Principles.pdf 
Ekvall, T. (2019). Attributional and Consequential Life Cycle Assessment. In M. J. Bastante-Ceca, J. L. Fuentes-Bargues, L. Hufnagel, F. Mihai, 
& C. Iatu (Eds.), Sustainability Assessment at the 21st century. IntechOpen. https://doi.org/10.5772/intechopen.89202  

https://www.lifecycleinitiative.org/wp-content/uploads/2012/12/2011%20-%20Global%20Guidance%20Principles.pdf
https://www.lifecycleinitiative.org/wp-content/uploads/2012/12/2011%20-%20Global%20Guidance%20Principles.pdf
https://doi.org/10.5772/intechopen.89202
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necessarily focuses on global warming, these other impact categories should also be 

considered and evaluated. 

Interpretation, where the results of the impact assessment are analysed for consistency and 

completeness of data used, sensitivity to variation, and uncertainty. Due to the sheer data 

intensity of LCA, it always involves the use of some amount of estimated, incomplete, or 

extrapolated data. Assessing the quality of the data use and the sensitivity of the results to 

the uncertainties in the data or assumptions made by the researcher is an integral part of 

any LCA. 

 

 
Figure 4. Different system boundaries used in life cycle assessment.8 
System boundary selection can have a large impact on the perceived emission balance of an NETP system. Life cycle 
assessment of an NETP should have as broad a system boundary as possible, accounting for emissions in the extraction 
and permanent storage processes and all associated supply chains. 

 

Some considerations particular to evaluating NETP systems using life cycle assessment9 are: 

• availability of data. Many uncertainties remain about implementing NETPs on a large-scale 

including, the material and energy inputs as technological learning progresses, the full 

extent of possible environmental impacts and indirect effects, as well as the overall response 

of the earth system from the increased extraction of CO₂ from the atmosphere. 

• the need to distinguish removals and avoided emissions. When evaluating the “global 

warming potential” of a given system, it is common LCA practice to add together both 

estimated physical flows of greenhouse gas emissions and removals with “avoided 

emissions”—reductions in emissions that are assumed to happen in other sectors due to this 

new product (e.g., the displacement of other products or services), with both removals and 

avoided emissions having negative values. However, as avoided emissions are not physical 

removals but rather an assumed change, this practice can lead to a negative “global 

warming potential” without true negative emissions (net removal of greenhouse gases from 

the atmosphere). 

 
8 Image from: Tanzer, S.E., Ramírez, A. (2019). When are negative emissions negative emissions? Energy & Environmental Science, 12. 

http://doi.org/10.1039/C8EE03338B. Used under a CC-BY 3.0 Open Access liscence. 
9 Brander, M, Ascui, F, Scott, V & Tett, S 2021, 'Carbon accounting for negative emissions technologies', Climate Policy. 
https://doi.org/10.1080/14693062.2021.1878009   

http://doi.org/10.1039/C8EE03338B
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• temporality. Standard LCA practice compresses all impacts of a system into a single metric, 

regardless of when those impacts occur. This obscures timing of extraction, storage, and 

associated emissions, which is particularly relevant for systems that involve CO₂ extraction 

that can occur over years or decades (e.g., afforestation, enhanced weathering). This delay 

can lead to a long “carbon payback period”, which is the length of time it takes for the 

removals to compensate for the associated emissions of the NETP system.   

• risk of reversal and sink impermanence, which represents another major temporal concern 

of LCA. Risk of impermanence requires explicit treatment in a NETP LCA’s uncertainty 

assessment. 

Issues of data availability are pertinent to all life cycle assessments and is a focal point in the 

uncertainty analysis conducted in the interpretation phase.  Temporality is rarely treated in LCA, 

and the potential impermanence of CDR makes it a particularly critical issue for LCA of NETPs. 

TABLE summarises some options for integrating the need to treat temporality and also 

separation of removals and avoidance in NETP LCAs.  

 
Table 2. Selected options for including CDR-specific issues into LCA. 

 Goal and Scope Inventory Impact Assessment Interpretation 

Separation of removals 

and avoidance 

Minimisation of multi-

functional processes 

Catalogue physical 

flows and avoidance 

flows separately 

Use separate impact 

categories for physical 

emissions/extractions and 

avoided emissions 

— 

Temporality and 

impermanence 

Establish explicit 

timeframe, large 

enough to account for 

permanence and 

reversal risks. 

Catalogue when 

extraction, storage, 

and emissions occur; 

Explicit inclusion of 

potential reversals 

Use of multiple GWP 

timeframes (e.g., 20-year, 

and 100-year); GWP 

factors for biogenic CO₂; 

graphing of GWP over 

time. 

Sensitivity analysis on 

timing of emissions and 

on GWP timeframes; 

Sensitivity analysis on 

reversal rates and 

timing 
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4 Treatment of NETP system components in EU and international 

accounting frameworks and regulation 

The extraction of atmospheric CO₂ by biomass and the storage of atmospheric and biogenic CO₂ in 

geological formations are two core components of multiple NETP systems. This section explores how 

both the capture and storage aspects of biogenic CO2 are included in the UNFCCC accounting 

framework as well as in EU policy. While there will be other emissions associated with NETP value 

chains, this section focuses specifically on the path of the carbon removed from the atmosphere via 

biomass growth, captured and its final fate.  

4.1 Regulation of biogenic CO₂ sources (and biomass) 
There are several EU policies which regulate the accounting for biomass and the emissions resulting 

from its use. While biogenic CO₂ emitted under the EU ETS is not counted as an emission, other 

safeguards in the Renewable Energy Directive, the Effort Sharing Regulation and the Land Use, Land 

Use Change and Forestry (LULUCF) legislation are designed to record the change in carbon stocks of 

individual member states10. This policy design assumes that an alternative approach, where 

emissions would be counted in the energy sector, would make it very difficult to avoid double 

counting with the LULUCF sector. By focusing on the very start of the value chain, the complexity of 

the accounting is in theory reduced and potentially long supply chains do not need to be tracked 

until their final stage11. 

The climate impact of the harvesting of woody biomass is accounted for in the LULUCF Regulation 

(Article 7). The Regulation states that the emissions12 resulting from changes in the pool of harvested 

wood products, including emissions from harvested wood products removed from its forests before 

1 January 2013, should be reflected in the accounts of each member state. Harvested wood products 

resulting from deforestation, wood products stored in solid waste disposal sites and wood harvested 

for energy purposes shall be accounted for based on instantaneous emissions to the atmosphere 

(LULUCF Regulation). While the LULUCF regulatory framework tackles carbon stocks, the Renewable 

Energy Directive aims to outline sustainability, energy efficiency and greenhouse gas emissions 

saving criteria for the use of biomass as an energy source13. Minimising GHG emissions of biomass 

supply chains has also been on the policy agenda of the EU. In its 2010 Biomass Report, the 

Commission has developed a simplified methodology for the calculation of GHG performance of 

solid and gaseous biomass used for heating/cooling and electricity production14   

The same approach is adopted by the UNFCCC and in the IPCC guidelines for national GHG 

inventories (IPCC 2006, 2019)15. According to the IPCC Guidelines, all carbon removed in wood and 

 
10 EU (2013). Decision No 529/2013/EU Of The European Parliament And Of The Council  
of 21 May 2013 on accounting rules on greenhouse gas emissions and removals resulting from activities relating to land use, land-use 
change and forestry and on information concerning actions relating to those activities. https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN  
11 Joint Research Centre, (2022). The use of woody biomass for energy production in the EU. https://data.europa.eu/doi/10.2760/831621 
12 The accounting method assumes that the release into the atmosphere of the entire quantity of carbon stored in harvested wood 
products occurs at the time of harvest (i.e., instantaneous oxidation). 
13 EU (2018). DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of 
the use of energy from renewable sources (recast). https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN  
14 European Commission (2014). State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in 
the EU. https://ec.europa.eu/transparency/documents-register/detail?ref=SWD(2014)259&lang=en  
15 Chatham House (2017). Woody Biomass for Power and Heat. https://www.chathamhouse.org/2017/02/woody-biomass-power-and-
heat/accounting-biomass-carbon-emissions  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN
https://data.europa.eu/doi/10.2760/831621
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN
https://ec.europa.eu/transparency/documents-register/detail?ref=SWD(2014)259&lang=en
https://www.chathamhouse.org/2017/02/woody-biomass-power-and-heat/accounting-biomass-carbon-emissions
https://www.chathamhouse.org/2017/02/woody-biomass-power-and-heat/accounting-biomass-carbon-emissions
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other biomass from forests is counted as emitted in the year of removal and in the country where 

the wood was harvested16.  

While the carbon accounting at source does in theory provide predictability and reduces complexity, 

the risks of double counting of the climate benefits of biomass aren’t fully addressed by the current 

policies, particularly on a global level.  

There are still many detrimental impacts of biomass use and loopholes in biogenic CO₂ accounting 

that are not fully recognised in the European or global policy framework. Key issues are detailed 

below. 

4.1.1 The carbon neutrality and sustainability of biomass sources 

Scientific studies, both from independent academia17 and the Joint Research Centre of the EU18, 

have demonstrated that some biomass sources, such as woody biomass, are not carbon neutral. Due 

to the time delay between the slow uptake of carbon by the biomass and the quick release upon 

combustion, there is a possibility that the claim of carbon neutrality is effectively the result of ‘front-

loading’ the future removals necessary to balance out the emission pulse. The fundamental issue is 

that there is a mismatch between when CO₂ is captured and when it is emitted. However, this has 

not been reflected in the GHG accounting of biomass in the RED, where woody biomass and its by-

products are still expected to significantly contribute to the renewable energy targets of the EU.19  

4.1.2 Focus on the energy sector omits other potential sources of removals 

According to Art. 29 of REDII, sustainability criteria for forest bioenergy are applied only to biomass 

utilised in installations producing electricity, heating and cooling or fuels with a total rated thermal 

input equal to or exceeding 20 MW (Member States may apply the sustainability criteria to 

installations with lower total rated thermal input).20 However, cement and steel plants that may use 

biomass and are equipped with CCS could fall below this threshold and be exempt from the criteria.  

4.1.3 Issues in Monitoring, Reporting and Verification 

The fact that all countries trading biomass don’t necessarily adhere to the same accounting rules 

(i.e., Annex 1 signatories versus non-Annex 1 signatories21) is a significant potential loophole in the 

biogenic CO₂ accounting system.  

While emissions caused by harvesting woody biomass and its by-products should be reported in the 

land use sector of each country, monitoring and verifying such emissions on a global level is very 

difficult. Coordinating hundreds of different regulation mechanisms and creating additional ones 

where there is no credible monitoring and verification yet is a monumental task. The varying ability 

of countries to accurately monitor and report their emissions also contributes to this challenge. 

 
16 UNFCCC (2003). Estimation, reporting and accounting of harvested wood products. Technical paper. https://unfccc.int/documents/3424  
IEA Bioenergy (2022). Carbon accounting in Bio-CCUS supply chains – identifying key issues for science and policy. 
https://www.ieabioenergy.com/wp-content/uploads/2022/06/IEA-Bio-BECCUS-Carbon-accounting.pdf  
17 EASAC (2021). Multi-functionality and sustainability in the European Union’s forests. 

https://easac.eu/fileadmin/PDF_s/reports_statements/Forests/EASAC_Forests_web_complete.pdf 
18 Joint Research Centre, (2022). The use of woody biomass for energy production in the EU. https://data.europa.eu/doi/10.2760/831621 
19 Fern (2022). European Parliament’s Vote On The Renewable Energy Directive Disappoints Campaigners. 
https://www.fern.org/publications-insight/european-parliaments-vote-on-the-renewable-energy-directive-disappoints-campaigners-

2561/  
20 Joint Research Center (2022)  
21 UNFCCC (2022). Parties to the United Nations Framework Convention on Climate Change. https://unfccc.int/process/parties-non-party-
stakeholders/parties-convention-and-observer-states  

 

https://unfccc.int/documents/3424
https://www.ieabioenergy.com/wp-content/uploads/2022/06/IEA-Bio-BECCUS-Carbon-accounting.pdf
https://easac.eu/fileadmin/PDF_s/reports_statements/Forests/EASAC_Forests_web_complete.pdf
https://data.europa.eu/doi/10.2760/831621
https://www.fern.org/publications-insight/european-parliaments-vote-on-the-renewable-energy-directive-disappoints-campaigners-2561/
https://www.fern.org/publications-insight/european-parliaments-vote-on-the-renewable-energy-directive-disappoints-campaigners-2561/
https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-states
https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-states
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4.1.4 Other biomass sources need to be regulated 

While the double counting of woody biomass is, at least in theory, prevented by the existing 

regulatory framework, Carbon Dioxide Removal can be the result of permanent storage of other 

sources of biogenic CO₂. The move away from the use of first- and second-generation biomass 

requires a parallel effort in the development of regulations for more advanced types of biomass. 

While some of them may be accounted for to some extent, there is a need for a coherent policy 

approach that tackles the accounting of biogenic CO₂ at each step of the supply chain.   

For example, the biogenic fraction of municipal solid and industrial waste is a potential avenue for 

achieving carbon removals.22 However, these biogenic CO₂ sources are very heterogenous and 

accounting for their full climate impact is challenging.  

The IPCC GHG accounting rules address the half-life of some products that might end up in the 

category of biogenic waste, such as paper, but offer several different methodologies to calculate 

their impact.23 The multiple options presented could therefore lead to a lack of harmonisation across 

different jurisdictions. 

Currently many accounting mechanisms assume that biogenic waste is carbon neutral (e.g., biogenic 

waste incineration), which doesn’t take into account their origin and potential land-use change 

impact of the original product.  

Table 3. Examples of biomass that could be relevant for NETP value chains and their corresponding relevant regulatory 
framework (non-exhaustive). 

Examples of type of biomass Relevant regulatory framework 

Energy crops and residues • Renewable Energy Directive 

Woody biomass and by-products • Renewable Energy Directive 
• LULUCF policy framework 

Algae • Renewable Energy Directive 

Biogenic municipal waste • Waste accounting rules IPCC 
• Waste Framework Directive 

Wet biogenic waste (e.g., sewage sludge) • Renewable Energy Directive 
• Waste accounting rules IPCC 
• Waste Framework Directive 

 

In addition to newly produced biomass, there are a range of biogenic materials that are collected as 

wastes at the end of the life cycle of a given product. These materials include paper and cardboard 

waste, animal and mixed food waste, vegetal wastes (e.g., sludges from washing biomass), 

household waste, common sludges (e.g., water treatment waste) and wood and forestry wastes.24 

Since this type of biogenic CO₂ and carbon sources may end up in NETP value chains through 

processes such as municipal waste incineration with carbon capture and storage, it is crucial to 

attribute the correct climate impact to the biogenic component of the waste to establish whether or 

not net carbon removals are achieved.  

Due to the variability in the type of product, use and lifetime, accounting for the climate impact of 

these wastes can only be properly done if their impact is accounted for every step of the way. For 

 
22 Wienchol, Szlęk, and Ditaranto (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. 
Energy (198). https://doi.org/10.1016/j.energy.2020.117352 
23 IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 4, Ch 12: Harvested Wood Products. https://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_12_Ch12_HWP.pdf  
24 European Commission (2017). Sustainable and optimal use of biomass for energy in the EU beyond 2020: Annexes of the Final Report. 
https://energy.ec.europa.eu/system/files/2017-06/biosustain_annexes_final_0.pdf  

https://doi.org/10.1016/j.energy.2020.117352
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_12_Ch12_HWP.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_12_Ch12_HWP.pdf
https://energy.ec.europa.eu/system/files/2017-06/biosustain_annexes_final_0.pdf
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example, decades may pass between the harvesting of wood for paper and its final disposal – in the 

meantime, the room for error grows as policy and liability frameworks change. That is why policies 

that assume the instantaneous oxidation of products right away are useful, because they account for 

these emissions right at the start of the value chain.  

When it comes to very heterogenous waste sources, such as biogenic municipal waste, it is 

important that any land use change impacts are accounted for earlier on in the supply chain to 

record the full impact of a given type of biomass (e.g., soy potentially causing deforestation and 

eventually ending up in the household waste in a different jurisdiction).   

4.1.5 The issues of reversibility and biomass sink  

The accounting for carbon storage in land sinks is regulated in the accounting rules on greenhouse 

gas emissions and removals resulting from activities relating to LULUCF. However, in case of 

reversals, Member States do not need to report emissions from natural disturbances (e.g., wildfires, 

insect and disease infestations, extreme weather events and geological disturbances) if they provide 

information demonstrating: 25 

• ‘’that all land areas affected by natural disturbances in that particular reporting year have 

been identified, including their geographical location, year and types of natural 

disturbances; 

• that no deforestation has occurred during the rest of the respective accounting period on 

lands that were affected by natural disturbances and in respect of which emissions were 

excluded from accounting; 

• which verifiable methods and criteria will be used to identify deforestation on those lands in 

the subsequent years of the accounting period; 

• where practicable, which measures the Member State undertook to manage or control the 

impact of those natural disturbances; 

• where possible, which measures the Member State undertook to rehabilitate the lands 

affected by those natural disturbances.’’ 

These exclusions are subject to specific conditions outlined in the LULUCF policy framework and 

depend on the calculation of the so called ‘background levels’ that are determined by several 

parameters described in Annex VI of the LULUCF Regulation.26 

However, ‘’if emissions in a particular year in the periods from 2021 to 2025 and from 2026 to 2030 

exceed the background level plus a margin, the amount of emissions exceeding the background level 

may be excluded'’.27 Consequently, in some cases, a part of the emissions resulting from natural 

disturbances would not be reported.  

 
25 EU (2013). Decision No 529/2013/EU Of The European Parliament And Of The Council  
of 21 May 2013 on accounting rules on greenhouse gas emissions and removals resulting from activities relating to land use, land-use 
change and forestry and on information concerning actions relating to those activities. https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN 
26 EU (2018). Regulation (EU) 2018/841 Of The European Parliament And Of The COUNCIL of 30 May 2018 on the inclusion of greenhouse 
gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending 
Regulation (EU) No 525/2013 and Decision No 529/2013/EU. https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32018R0841&rid=1  
27 Ibid. 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0841&rid=1
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0841&rid=1
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While there are some safeguards in the EU’s LULUCF accounting rules ensuring that these sinks are 

no longer claimed as removals after natural disturbances occur,28 this may not be the case for other 

jurisdictions across the globe from which biomass may be imported.  

When it comes to products coming from the forestry and biomass sector, the carbon embedded in 

the product is still counted as emitted after the ‘half-life’ of a given biomass (i.e., 2 years for paper, 

25 years for wood panels, 35 years for sawn wood).  While long lived products are encouraged, the 

change in the ‘carbon pool’ in products needs to be reported under the LULUCF accounting 

methodology. Harvested wood products are one of the six ‘carbon pool’ categories included in the 

accounting for LULUCF (including above ground biomass, below ground biomass, litter, dead wood 

and soil organic carbon). However, for correct accounting for NETPs and carbon removal, it is crucial 

that the permanence of carbon storage is monitored – for products, even if they are long lived, this 

can be an insurmountable challenge in terms of monitoring, reporting and verification.  

4.2 Treatment of CO₂ transport and storage 
Some NETPs, such as BioCCS or DACCS, will utilise CO₂ transport and storage networks to remove 

CO₂ from the atmosphere. Therefore, it is necessary to also analyse CO₂ transport and storage 

regulations globally to identify the potential gaps in the GHG accounting for NETPs. This section 

specifically addresses the transport and geological storage of gaseous CO₂ which is chemically 

captured from the air or from flue gases. Other forms of CO₂ storage are not addressed in this 

section. 

The IPCC and the European Union already have guidelines and policy frameworks, respectively, 

which address the transport and storage of gaseous CO₂. 

The IPCC special report on CCS29 from 2005 considered two options for greenhouse gas accounting 

for CCS systems: 

1. Reporting CO₂ that has been captured and permanently stored as an emission reduction in 

the sector where the capture initially took place (e.g., electricity generation, cement 

production). This method is however less transparent about overall carbon flows of a given 

supply chain. This GHG accounting system also mentioned the possibility to describe the 

carbon flows as additional information to increase transparency. 

2. Reporting CO₂ that has been captured and permanently stored separately, as a CO₂ sink, and 

still counting the CO₂ as produced in its sector of origin.  

The IPCC accounting framework30 uses the first approach, which provides greater granularity of data 

on where CO₂ capture occurs, but less granularity on where and when the CO₂ is stored. Only CO₂ 

that goes to permanent geological storage or mineral carbonation is currently eligible to be counted 

as stored. The IPCC GHG inventory guidelines also explicitly mentions the geological sequestration of 

biogenic CO₂. The IPCC Guidelines note that “once captured, there is no differentiated treatment 

between biogenic carbon and fossil carbon: emissions and storage of both will be estimated and 

reported.31 According to the methodology, both biogenic and fossil CO₂ captured from flue gases 

should not be added to the total emissions (i.e., net emissions should be reported).   

 
28 European Commission (2021). Land use and forestry regulation for 2021-2030. https://climate.ec.europa.eu/eu-action/forests-and-
agriculture/land-use-and-forestry-regulation-2021-2030_en  
29 IPCC (2005) Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.) Special Report on Carbon dioxide 

Capture and Storage, Chapter 9, Cambridge University Press, UK. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/  
30 IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 1, Chapter 8. 

https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/1_Volume1/19R_V1_Ch08_Reporting_Guidance.pdf  
31 Ibid. 

https://climate.ec.europa.eu/eu-action/forests-and-agriculture/land-use-and-forestry-regulation-2021-2030_en
https://climate.ec.europa.eu/eu-action/forests-and-agriculture/land-use-and-forestry-regulation-2021-2030_en
https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/1_Volume1/19R_V1_Ch08_Reporting_Guidance.pdf
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Biomass combustion is not reported under the energy sector, on the basis that it is reported as 

emitted in the Land Use, Land-use Change and Forestry sector. Capturing and storing zero rated 

biogenic CO₂ emissions means that they are reported as carbon removals in the IPCC sector in which 

the capture takes place. It must be noted that this is not the case in the EU ETS, where biogenic 

emissions are out of scope. 

4.2.1 CO₂ capture 

According to the current IPCC guidelines, the CO₂ emissions captured from point sources, such as 

industrial or power plants, should be allocated to the sector where the CO₂ is generated. Additional 

energy emissions for the compression of CO₂ are also accounted under the capture category. 

However, the CO₂ generated does not need to be allocated to that sector if it can be shown that the 

CO₂ is stored in a properly monitored geological storage site.32 In this case, the emission reduction is 

reported in the sector where the capture took place. If the captured CO₂ is used, it is assumed to be 

emitted in the sector where it was captured.33 The fugitive emissions from the process of using the 

captured CO₂ are also included in this reporting and reported in the part of the supply chain where 

the CO₂ use happens.  

The potential fugitive GHG emissions associated with the capture process (e.g., coming from the 

treatment of amines, etc.) are not explicitly mentioned and estimates are not available. 

Nevertheless, there is a reporting category specifically for fugitive emissions from CCS these 

emissions could be included in. While these emissions are likely to be negligible compared to CO₂ 

captured, they should still be included into the GHG accounting.  

4.2.2 Transport of CO₂ 

The IPCC guidelines explicitly indicate that fugitive emissions from pipelines transporting the CO₂ 

should be allocated to the national territory of the pipeline, including offshore areas. This implies 

that emissions from one pipeline may be distributed between two or more countries. The IPCC 

Guidelines also indicate that, in the event of CO₂ leakages in pipelines crossing borders, the CO₂ leak 

should be accounted to the country where it occurs. 

However, fugitive emissions resulting from other means of transport such as rail, ships or trucks, are 

not explicitly included in the IPCC Guidelines. Given that these means of CO2 transport will likely also 

be used in CCS projects, such as Klemetsrud (e.g., trucks to carry CO₂ to the port of Oslo), this lack of 

specific instructions might become an issue in the future. At the moment, the fossil fuel emissions 

from transport modes used (e.g., ships, trucks and rail) are covered under the category of mobile 

combustion and other relevant subcategories. Crucially, for international transport, these emissions 

are reported under ‘international bunkers’ and not allocated to any country.  

4.2.3 Storage of CO₂ 

The IPCC Guidelines state that captured CO₂ does not have to be reported and counted in the sector 

where it was generated when it is permanently stored in a geological storage site or in the form of 

mineral carbonation. However, it is a requirement to account the CO₂ injected into the storage site. 

Emissions associated with the injection of the CO₂ into the geological storage site, and possible 

leakage, is meant to be closely monitored and is linked to the country in whose national jurisdiction 

or by whose international right the point of injection is located. This should include any emissions 

 
32 Ibid. 
33 The EU ETS will also follow this approach with the regards to CO2 use, unless the CO2 is used in a product where it is permanently 
chemically bound away from the atmosphere. Exact guidelines for this will be elaborated at a later stage. 
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arising from leakage of CO₂ from a geological formation that crosses a national boundary but should 

be dealt with bilaterally between countries.  

When it comes to CO₂ storage in terms of mineral carbonation, it is reported either in sector where 

capture took place, or in its own special category. 

In the EU ETS, CO₂ storage is regulated by the CO₂ storage Directive.34 The methodology in the 

Directive reflects the same rules present in the IPCC GHG accounting guidelines. Under the ETS 

Directive35, CO₂ produced by an installation, and which is captured and geologically sequestered CO₂ 

does not require emission allowances to be surrendered if the geological storage site meets the 

requirements of the CO₂ Storage Directive. However, the CO₂ Storage Directive does not currently 

recognise the mineralisation of captured CO₂ as a way to avoid surrendering an emission allowance. 

4.2.4 The need for robustness in rules for the GHG accounting of the use of CO₂  

At the moment, the IPCC methodology for carbon or CO₂ stored in non-fuel products manufactured 

from fossil fuels or other non-biogenic sources of carbon considers emissions released from their 

production, use and destruction. Emissions are estimated at each stage, when and where they occur 

(e.g., in waste incineration). 

This provision in the methodology is crucial, since if the product only results in temporary storage of 

carbon or CO₂ it should not be counted as a carbon sink. When it comes to long-term storage in 

products, the inventory methodology would need to be tailored and done on a case-by-case basis, 

but this would pose issues due to the potential diversity and heterogeneity of products on the 

market. To avoid this becoming a wild west of inventory accounting for various products, clear rules 

need to be established, recognising the need to verifiably trace the flow of carbon from the 

atmosphere to a permanent store, along with the emissions associated with the process.  

4.2.5 Potential accounting issues related to CO₂ storage 

Potential issues could arise when CCS GHG accounting is done for global supply chains. If the 

captured CO₂ is captured in one country but released in another, or at later times, the accounting 

becomes more complex and there are more moving pieces that need to be coordinated (e.g., 

multiple regulatory frameworks, timeframes and value chains). This accounting risk is particularly 

acute for emissions displaced in time and location, since the emission inventories are done by 

country and year. In other words, the yearly national GHG reporting accounting could easily fail to 

report emissions that are delayed in time, displaced to other countries or displaced to international 

waters.36 In these cases, global GHG accounting methods must ensure that no double accounting of 

CO₂ storage occurs. While some regions already have coordination in place (e.g., within the 

European Economic Area), some examples will require further coordination (e.g., storage or capture 

of CO₂ to and from the EEA).  

4.2.6 The London Convention and the London Protocol  

 
34 EU (2009). Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon 
dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 
2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (Text with EEA relevance). https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32009L0031  
35 EU (2003). Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for 

greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC (Text with EEA relevance) 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0087  
36 IPCC (2005) Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.) Special Report on Carbon dioxide 

Capture and Storage, Chapter 9, Cambridge University Press, UK. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0031
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0031
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0087
https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/
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The London Convention and the London Protocol are global agreements, under the auspices of the 

International Maritime Organisation (IMO), which manage and prevent the dumping of certain 

wastes, including CO₂, at sea. Prior to being amended, these agreements presented a legal barrier to 

geological storage of CO₂ as well as to the international ‘export’ of CO₂ intended to be geologically 

stored. In 2006 and 2009 respectively, amendments were drafted to address these legal barriers, on 

the condition that the relevant parties come to an ‘arrangement’ or ‘agreement’ with regards to 

issues such as permitting and that this be communicated to the IMO. 

Despite these amendments, there is still broad confusion as to whether the international transport 

of CO₂ is permitted under the London Protocol, notably since the latest amendment is not yet 

globally in force, lacking the minimum number of ratifications. Parties which have ratified the 

amendments are deemed to be in compliance. 

At the EU level, the European Commission issued a clarification in 202237 assuring that all its 

Member States and the members of the European Economic Area are already in compliance with the 

London Protocol on the basis that the CO₂ Storage Directive (or CCS Directive)38 and the ETS 

Directive39 already form a legal agreement which complies with the necessary requirements. 

Effectively, inside the European Economic Area, the London Protocol no longer presents a legal 

barrier. However, third countries seeking to either import or export CO₂ from the EEA do not benefit 

from this regulatory clarity.  

In fact, under the ETS Directive, CO₂ produced by an installation and which is captured and 

geologically sequestered CO₂ does not require emission allowances to be surrendered, as long as the 

geological storage site meets the requirements of the CO₂ Storage Directive. Critically, the CO₂ 

Storage Directive only covers storage sites inside the EEA, meaning that CO₂ captured inside the EEA 

can only be transported and stored inside the EEA.  

This is of particular relevance to the United Kingdom, in light of its exit from the EU and EEA. As it 

stands today, it is not legally possible to export CO₂ captured in the EEA to the UK, and vice versa. 

While the UK has substantial geological storage potential, only CO₂ captured in the UK can currently 

be stored there, making it more difficult for viable projects to materialise.  

Finally, GHG accounting issues can also come up with countries or parties that do not accept liability 

for the transferred or stored CO₂. For example, while in the EU this is resolved by the CO₂ Storage 

directive, it is a possibility that two countries comply with the London Protocol and improperly 

handle the liability of CO₂ storage.  Similarly, GHG accounting problems can arise if potential debits 

are transferred sufficiently far into the future, there could be little assurance that the systems and 

institutions of liability will still be in place if the CO₂ is released (IPCC 2005).  

 

 
37 European Commission (2022). The EU legal framework for cross-border CO₂ transport and storage in the context of the requirements of 

the London Protocol. https://climate.ec.europa.eu/document/dfbbc90c-071e-4088-ada2-7af467084b30_en   
38 EU (2009). Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon 

dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 

2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (Text with EEA relevance). https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32009L0031  
39 EU (2003). Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for 

greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC (Text with EEA relevance) 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0087  

https://climate.ec.europa.eu/document/dfbbc90c-071e-4088-ada2-7af467084b30_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0031
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0031
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0087
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5 AN ILLUSTRATIVE EXAMPLE OF TRANSBOUNDARY ACCOUNTING IN CDR 

SUPPLY CHAINS: BIOCCS  

 

5.1 The Supply Chain of BioCCS from a Life Cycle Accounting Perspective 
A BioCCS system involves the extraction of atmospheric CO₂ via the photosynthesis of biomass and 

storage of CO₂ produced from the use of that biomass in secure geologic storage. In this illustrative 

example, we focus on greenhouse gas emissions for a BioCCS system and account for the CO₂ 

extracted from the atmosphere by biomass, as well as all greenhouse gases emitted during: 

• the preparation and use of land for biomass cultivation 

• the cultivation and harvesting of biomass 

• transport of biomass 

• the conversion of biomass into an intermediate product (e.g., pellets, charcoal, wood chips) 

• biomass use (e.g., combustion of energy or conversion to final products) 

• the capture of the CO₂ emissions from biomass use (and/or intermediate conversions) and 

associated energy use 

• preparation and transport of captured biogenic CO₂  

• the injection of CO₂ into secure geologic storage 

• the indefinite monitoring of the stored CO₂ 

• the supply chains associated with the material, energy, and service inputs into the above 

processes   

• infrastructure and machinery built for the extraction, transport, processing, or storage of 

biomass and CO₂ 

• biomass lost during cultivation, harvesting, transport, and conversion 

• CO₂ lost during the capture, transport, and injection processes and storage leakages 

occurring after injection 

The above list is meant to be illustrative, not exhaustive, and the processes and emissions in a 

BioCCS system will vary depending on the specific implementation. Figure 5 presents a highly 

simplified illustration of what these carbon flows might look like in a BioCCS case (not intending to 

be representative of actual flow quantities, which can vary widely depending on system 

configuration). Note that the extractions and emissions are counted regardless of where or when 

they occur, and the “net CDR” metric provides the amount of greenhouse gas emissions minus 

extractions over the whole life cycle of the BioCCS system. Also, the amount of CO₂ geologically 

stored is not explicitly accounted for in the life cycle greenhouse gas accounting, as it is neither an 

emission nor an extraction. Also note that, in attributional LCA, indirect impacts such as greenhouse 

gas emissions from indirect land use change resulting from a general increase for biomass demand 

or changes in the electricity mix from increased demand due to CO₂ capture energy use would not 

be accounted for40.  However, these would be accounted for in a consequential LCA. 

 
40 Brander, M, Ascui, F, Scott, V & Tett, S 2021, 'Carbon accounting for negative emissions technologies', Climate Policy. 
https://doi.org/10.1080/14693062.2021.1878009   

https://doi.org/10.1080/14693062.2021.1878009
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Figure 5. Stylised example of greenhouse gas flows in a bioCCS system. 

 

 

5.2 Territorial Accounting of Transboundary CDR Supply Chains of BioCCS 
In a territorial accounting framework, the intent is still to account for the same physical flows of 

emissions and extractions as in the LCA system, but they would be estimated and divided differently. 

If the greenhouse gas emissions for this BioCCS system were allocated using the IPCC accounting 

framework, they might be accounted for as shown in Figure 6. Where biomass is produced in nation 

A, used in nation B, and the resulting biogenic CO₂ transported to nation C for injection into 

geological storage, and a small CO₂ leak that occurs in the storage reservoir exits the ground in the 

territory of nation D. 

 

Figure 6. Stylised example of greenhouse gas flows and accounting in a transboundary bioCCS system. 

Nation A, the biomass producer, counts the atmospheric CO₂ extracted by growing biomass as a 

“removal” (not net CDR). When that biomass is harvested, the carbon stored by the biomass is 

counted as emitted as CO₂. Because of this, any emissions of biogenic CO₂ from the harvested 

biomass, such as from combustion or losses, are not accounted for, though emissions of non-CO₂ 

biogenic greenhouse gases are counted. Nation A also accounts for any emissions of greenhouse 

gases resulting from land use change, biomass cultivation and harvest, road transport where the fuel 

was sold in Nation A, and any domestic waterway or rail transport of biomass. 
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Nation B, the biomass user, like Nation A, does not account for any emissions of biogenic CO₂ before 

that CO₂ is captured. When the biogenic CO₂ is captured intended for geological storage, the 

captured biogenic CO₂ is counted as a removal in the sector where the capture took place. This 

counteracting Nation A’s accounting of the embodied emissions from harvested biomass and after 

the CO₂ is captured, any leaks or losses that take place in Nation B is counted as an emission. Nation 

B also accounts for domestic fossil and non-CO₂ biogenic greenhouse gas emissions from energy 

provision and industrial process emissions related to the conversion and use of biomass and CO₂ 

capture, as well as the domestic transport of biomass and CO₂. 

Nation C, the CO₂ injector, accounts for CO₂ leakage that occurs in the transport and storage 

processes, CO₂ released during subsequent leakage, and the domestic fossil and non-CO₂ biogenic 

greenhouse gas emissions from energy provision and industrial process emissions related to 

transport and injection of that CO₂. 

Nation D, where CO₂ leakage occurs, does not account for any emissions, as leakage occurring from 

geologic storage is accounted in the inventory of the injection site, regardless of where the leak 

surfaces. If, however, the leakage occurred from a pipeline within Nation D’s territory, then it would 

be accounted for by Nation D. 

The emissions resulting from the supply chains of fuels and materials used in the BioCCS system will 

also be accounted by the countries where those emissions occur. Emissions from the ship (or air) 

transport of biomass or CO₂ (and other materials in the associated supply chains) across 

international boundaries are part of a nation’s estimate of emissions from fuel sold in international 

bunkers, but those emissions are not assigned to any nation’s inventory.  

IPCC greenhouse gas accounting is aggregated on the sector level, so these emissions and 

extractions would not be attributed to a “CDR” or “BioCCS” system, but rather added to the relevant 

sector total, such as “land converted to forest land”, “fuel combustion”, “solvent use”, “domestic 

water-borne navigation”, “transport of CO₂”, etc. Emissions for each sector, and each nation, are 

aggregated into net values, so that, on paper, the emission balance for each nation in the direct 

BioCCS system would be: 

• Nation A: +8 

• Nation B: -88 

• Nation C: +2 

• Nation D: 0 

Nation B, where biomass use and CO₂ capture occurred, is the only one with a net-negative balance 

(one that is 18 units greater than the total net removal of the BioCCS system), even though the 

extraction took place in nation A, and the storage in nation C. Furthermore, a fraction of the 

emissions is unaccounted for by the nations directly involved in BioCCS: emissions occurring in 

supply chains elsewhere are catalogued in disperse national inventories, and emissions from 

international ship and air transport are wholly unassigned to any actor. Indirect effects, such as land 

use change elsewhere from a general increase in biomass demand would be accounted for in the 

nations where they occur but would be wholly detached from any processes related to the BioCCS 

system. 
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5.3 Limitations & Other issues 
One of the key limitations to the current accounting for biomass in the EU is the categorisation of all 

biomass sources as carbon neutral under the EU ETS41. This problem has been recognised by the EU 

policymakers and the current policy framework is being reformed to reflect the nuances of the 

recent scientific research outputs42. Under current accounting rules, the full climate impact of some 

sources of biomass is not fully reflected, which is why appropriate amendments need to be made to 

the relevant legislation.   

In LCA accounting, the emissions and removals are assigned to the BioCCS system itself, thus 

allowing the total net removal to be estimated. However, a technology system is not a liable actor. In 

the territorial accounting, emissions and extractions are assigned to liable actors (nation states), 

however it is not possible from the annualised sectoral accounting to determine if a specific CDR 

system results in net removal and not all emissions from that CDR system may be assigned to a liable 

actor. 

Life cycle accounting and territorial accounting handle time in ways that can distort perceptions of 

when emissions and removals occur. In territorial accounting, the emissions and extractions are 

accounted for in the year that they occur, with CO₂ embodied in biomass accounted for as a removal 

during its growth, an emission when it is harvested, and again as a removal when it is captured for 

the purposes of geologic storage. Furthermore, as emissions from land use are accounted for by the 

total change in carbon stocks in a given year, it is not possible to account for the specific growing 

time and carbon uptake speed of the biomass used in a BioCCS system. As the UNFCCC framework is 

focused on annual emission balances, if extractions/emissions from long-rotation biomass, or 

biomass that is harvested, used, and/or stored, or associated supply chains, occur in different years, 

there will not be a single inventory available that accounts for the total net emissions associated 

with the BioCCS system. 

Life cycle accounting, in contrast, typically compresses into the single “net CO₂eq” metric, also 

obscuring any temporal delay. Emission factors for biomass that incorporate the global warming 

potential of the temporary residence of biogenic CO₂ in the atmosphere (until regrown by new 

biomass) have been proposed43, but are not in widespread use, and still leaves the timing obscured. 

Timing of extraction, emission, storage, and leakage is particularly relevant to the concepts of 

“carbon payback period” and the overall efficiency of the CDR system44, which are not easily seen in 

the metrics used in life cycle or territorial accounting. The carbon payback period is length of time 

before a CDR system has permanently stored sufficient atmospheric CO₂ to compensate for the 

emissions in all its associated supply chains, particularly those of land use change. This delay also 

results in a “removal efficiency”—the ratio of net CO₂ removed to total CO₂ extracted—that can 

change over time. As illustrated in Figure 7, a BioCCS system that uses biomass from agricultural 

residues or energy crops grown on marginal agricultural land has a fast rotation period and no 

emissions associated with land use change can reach an equilibrium efficiency shortly after the 

system is operational, as it only has to payback emissions from infrastructure and other start-up 

 
41 Norton, M, Baldi, A,  Buda, V, et al.  Serious mismatches continue between science and policy in forest bioenergy. GCB 
Bioenergy.  2019; 11: 1256– 1263. https://doi.org/10.1111/gcbb.12643 
42 Joint Research Centre, (2022). The use of woody biomass for energy production in the EU. https://data.europa.eu/doi/10.2760/831621 
43 Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H. And Hertwich, E. (2011), CO2 emissions from biomass combustion for 

bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy, 3: 413-426. https://doi.org/10.1111/j.1757-
1707.2011.01102.x 
44 Chiquier et al (2022) A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & 
Environmental Science. https://doi.org/10.1039/D2EE01021F 

 

https://doi.org/10.1111/gcbb.12643
https://data.europa.eu/doi/10.2760/831621
https://doi.org/10.1111/j.1757-1707.2011.01102.x
https://doi.org/10.1111/j.1757-1707.2011.01102.x
https://doi.org/10.1039/D2EE01021F
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activities. However, a BioCCS system that has to payback emissions from land use change may take 

years to “pay back” the initial emissions pulse, and decades to reach a CDR efficiency above 50%. 

Finally, accounting for greenhouse gas emissions, even when done comprehensively, does not take 

into consideration the other issues relevant to biomass use, such as competing uses of biomass, land 

use change, water stress, eutrophication from fertiliser use, governance issues of importation, 

among others. Non-emission sustainability criteria are a fundamental concern for any use of 

biomass, though beyond the scope of this current report. 

 

 
Figure 7. Figure 12 from Chiquier et al 2022 , “Evolution of the CO₂ removal efficiency of [BioCCS] over 1000 years for 
different types of biomass feedstock and land.” 45 
The lines that do not start at year zero indicate systems with a “carbon payback period”—the time it takes for the 
greenhouse gas emissions of the BioCCS system 

 

Accounting for emissions of a BioCCS system, or any system, is also dependent on the availability of 

accurate data about the system under study and the availability of resources to measure and report 

that data. Errors and uncertainties can arise from, e.g., insufficient system boundary choices; 

incorrect exclusion of a process within the system; inability to conduct measurements; inaccurate 

models used for emission estimation; lack of measurement or modelling technique; the use of 

unrepresentative data; measurement or modelling error; misreporting; or “unknown unknowns”. In 

the case of territorial accounting, different nations may also use different estimation techniques or 

have differing quality of data or resources available for the estimation. While these issues are not 

specific to BioCCS or NETPs in general, the biggest risk specific to NETP systems is over-estimation of 

the net removal. This risk is worse for systems with low CDR efficiencies, as the risk becomes not 

only that less removal is happening than expected, but that the NETP systems results in a net 

increase in atmospheric CO₂.  

 
45 Ibid, used under an open access CC-BY 3.0 license. 
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6 TRANSBOUNDARY CONSIDERATIONS OF OTHER NETP SUPPLY CHAINS 

The accounting considerations for transboundary bioCCS presented above are also concerns for 

other NETP supply chains involving biomass and CO₂ storage. However, each supply chain will have 

its own set of issues, depending on its specific complexities, some of which are summarized here for 

DACCS, biochar, enhanced weathering, ocean CDR, and storage of carbon in biomass.  

6.1 Direct air carbon capture and storage 
A DACCS system, Figure 8 involves the extraction of atmospheric CO₂ via the use of a chemical or 

physical solvent or sorbent, after which the captured CO₂ is sent to secure geologic storage. 

An LCA focusing on greenhouse gas emissions for a CDR system would account for the CO₂ extracted 

from the atmosphere by direct air capture minus greenhouse gases emitted during 

• the construction of the infrastructure and machinery used by the DAC plant and CO₂ 

transport and storage  

• the energy provision for direct air capture, CO₂ preparation, and CO₂ transport 

• the injection of CO₂ into secure geologic storage 

• the indefinite monitoring of the stored CO₂ 

• the supply chains associated with the material, energy, and service inputs into the above 

processes   

• CO₂ lost during the capture, transport, and injection processes and storage leakages 

occurring after injection 

 

Figure 8. Stylised example of greenhouse gas flows in DACCS system 

 

Direct air CO₂ capture has the same considerations for CO₂ transport, storage, and leakage as 

discussed for BioCCS. While CO₂ captured from the atmosphere via DAC is not explicitly considered 

in the IPCC accounting guidelines, all CO₂ captured for the purpose of geologic storage is treated the 

same. Geologically-destined CO₂ is counted negatively as a “removal” when it is captured and any 
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subsequent re-release is counted as a positive emission46.  Similarly, the same issues of supply chain 

accounting for the production of energy and materials apply. 

Direct air capture is an energy intensive NETP, requiring between 8-12 GJ of electricity or thermal 

energy per tonne of CO₂ extracted.  It is therefore essential to account for the exact energy mix used 

for a given DACCS system — and its exact carbon/GHG intensity. Crucially, the large-scale 

deployment of DACCS may also result into a higher overall energy demand, which in turn may have 

other indirect impacts. Ensuring that energy provision for DACCS is additional to existing energy 

production would decrease the risk of inducing indirect changes in energy provision elsewhere, such 

as may arise from competition with other demands for electricity or strain on grid transmission. 

The international transmission of electricity and the international transport of captured CO₂ are the 

most likely points where transboundary emissions would occur in a DACCS system. However, DACCS 

systems have the potential to have operational supply chains that are short, in terms of geographic 

space between major processes; delay between extraction, storage, and associated emissions; and 

the number of inputs and conversion steps required. This reduces the risk of incomplete accounting, 

particularly if they are co-sited in areas with favourable energy resources and geological storage. 

In terms of temporal issues, since extraction, energy provision, and storage can happen nearly 

simultaneously, the main risk for delayed emissions is the possibility of CO₂ leakage from geologic 

storage. However, if direct air capture plant uses grid electricity as its primary energy, or is 

accounted for using averaged electric or thermal energy provision emissions (e.g., as may be done in 

an attributional LCA), this can lead to the estimated emissions for the DACCS system having an 

overall removal efficiency that changes substantially over time, not due to carbon payback, but due 

to the increased efficiency of the energy provision system, as shown in Figure 14. In territorial 

accounting, this would be reflected in the decrease in energy emissions reported annually. In LCA, 

however, the emissions and extractions of the DACCS system are provided as a single net value, such 

as averaged over the expected operational lifetime of a plant, thus obscuring the impact of that 

change. The expected change in efficiency may even be lost entirely in attributional LCA, which 

typically uses static average data. 

 

Figure 9. Figure 14 from Chiquier et al (2022). " Evolution of the CO2 removal efficiency of DACCS over 1000 years for 
different regions and DACCS archetypes."47 

 
46 In the case of fossil CO₂ captured for geologic storage, it is counted both as “CO₂ produced” (i.e., an emission) and “CO₂ removed”. 
47 Chiquier et al (2022). A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & 

Environmental Science. https://doi.org/10.1039/D2EE01021F, used under an open access CC-BY 3.0 license. 

https://doi.org/10.1039/D2EE01021F
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6.2 Biochar 
A biochar system (Figure 10) involves the extraction of atmospheric CO₂ via the photosynthesis of 

biomass, the conversion of that biomass into charcoal, and storage of that biochar either in 

concentrated form (e.g., biochar burial) or in disperse form (e.g., application to agricultural soils). 

An LCA focusing on greenhouse gas emissions for a biochar system would account for the CO₂ 

extracted from the atmosphere by biomass minus greenhouse gases emitted during 

• the preparation and use of land for biomass cultivation 

• the cultivation and harvesting of biomass 

• transport of biomass 

•  the preparation of biomass (e.g., chipping) 

• the pyrolysis of biomass into biochar, including losses to biogas and biooil. 

• the transport of biochar to its storage site 

• the grinding and spreading of biochar, if in disperse soil storage 

• changes in soil emissions (e.g., CH4, N2O) due to biochar application48 

• the supply chains associated with the material, energy, and service inputs into the above 

processes   

• infrastructure and machinery built for the extraction, transport, processing, and/or storage 

of biomass and CO₂ 

• biomass lost during cultivation, harvesting, transport, and conversion 

• the degradation of biochar  

 

 

Figure 10. Stylised example of greenhouse gas flows in a biochar system 

 

Biochar has the same accounting concerns for biomass production, harvesting, conversion, 

transport, and land use change as described in the BioCCS pathways. In particular, similar 

transboundary issues can occur if the biomass is grown in one region and the biochar is produced 

 
48 These are not typically accounted for in biochar LCA 
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and/or used in another, and it is possible that a single production facility of biomass may not only 

import biomass from multiple regions, but also export biochar to multiple regions. 

Biochar has a lower expected CDR efficiency (Figure 11) due to the carbon lost during the pyrolysis 

process and the decay of biochar. Pyrolysis efficiency can vary widely depending on biomass and 

pyrolysis conditions, with one review showing a range of 20-58% conversion of biomass to biochar49, 

with the remaining lost to liquids and gas. The stability of the biochar also depends on the specific 

biomass and pyrolysis conditions used50, as well as the specific soil it is applied to and climatic 

conditions it is exposed to. 

Biochar is not currently considered an accountable form of CO₂ storage in the IPCC framework. 

Biochar decay (Figure 11) is a particular hurdle to is carbon accounting, since it leads to the eventual 

reversal of the removal, albeit potentially not full reversal for hundreds of years. For example, in the 

biochar modelling study by Woolf et al, biochar at the global mean soil temperature (14.9°C) lost 18-

37% of its stored carbon over 100 years, 66-81% over 500 years, and 75-92% over 1000 years51. Since 

the decay occurs over time, rather than in an eventual pulse, a methodology is needed to assign 

liability for the reversal. For example, having a buffer of biochar so that the net removal accounted 

for represents an average CDR efficiency over a specified timeframe (e.g., 500 years) or having a 

liability to replace the decayed biochar overtime to maintain an average CDR efficiency.   

The use of biochar as a soil amendment also introduces other complication into its accounting, 

namely issues of monitoring dispersed storage and albedo change. Applying biochar over a wide 

area increases the burden for monitoring its stability, particularly given the heterogeneity of 

potential biochar systems and limited available knowledge on biochar decay rates (NASEM, 2019). 

Secondly, the dark colour of biochar can decrease the albedo of the land to which it is applied. While 

not a greenhouse gas, changes in albedo can also have an indirect impact on global warming and is 

therefore relevant to achieving the end goal of NETP systems—reducing global warming—and 

should be accounted for.  

 

Figure 11. Figure 13 from Chiquier et al (2022)52. "Evolution of the CO₂ removal efficiency of biochar over 1000 years for 
different types of biomass feedstock in different regions" 

 
49 Tripathi, Sahu, and Ganesan (2016), Effect of process parameters on production of biochar from biomass waste through pyrolysis: A 
review. Renewable and Sustainable Energy Reviews (55). 
  https://doi.org/10.1016/j.rser.2015.10.122 
50 Woolf et al (2021). Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environ. Sci. Technol. (55)21. 
https://pubs.acs.org/doi/10.1021/acs.est.1c02425  
51 Ibid. 
52 Chiquier et al (2022). A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & 

Environmental Science. https://doi.org/10.1039/D2EE01021F, used under an open access CC-BY 3.0 license. 

https://doi.org/10.1016/j.rser.2015.10.122
https://pubs.acs.org/doi/10.1021/acs.est.1c02425
https://doi.org/10.1039/D2EE01021F
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6.3 Enhanced weathering 
An enhanced weathering system involves speeding up the natural weathering of certain rocks, such 

as silicates, by mining, grinding, and spreading them over land to increase their exposed surface 

area. The rocks then react with CO₂ and moisture in the air over a period of years or decades, 

dissolving into carbonate molecules, which then leeches into soil and waterways. 

An LCA focusing on greenhouse gas emissions of an enhanced weathering system would account for 

the CO₂ extracted from the atmosphere by the weathering process minus greenhouse gases emitted 

during 

• the mining of minerals 

• the crushing and grinding of the mined minerals 

• the transport and application of mineral 

• the monitoring of the CO₂ extraction by the minerals 

• the supply chains associated with the material, energy, and service inputs into the above 

processes   

• infrastructure and machinery built for the extraction, transport, or processing of the 

minerals 

 

 

Figure 12. Stylised example of greenhouse gas flows in an enhanced weathering system 

 

The extraction of atmospheric CO₂ by enhanced weathering is a process that can progressively take a 

few months to a few decades, and that usually after nearly all associated system emissions. This can 

result in “carbon payback period” of years or decades. Since the speed of weathering increases in 

warm, humid regions, yet 50% of the world’s olivine—a silicate mineral commonly proposed for 
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enhanced weathering—is produced in Europe (predominantly Norway)53, this leads to the potential 

of minerals mined in temperate regions being transported to (sub-)tropical regions for spreading. 

Besides the impact on CDR efficiency due to emissions from transport, this also raises particular 

concerns relating to the attribution of emissions resulting from international transport. 

Like biochar, enhanced weathering has to account for high upfront emissions, monitoring dispersed 

storage of extracted CO₂, possible changes in albedo, and uncertainty in timing of chemical 

reactions. For enhanced weathering, the rate of mineral dissolution is of critical concern and is 

dependent on the chosen mineral, the size of the ground mineral, and the climatic conditions that it 

is exposed to (Figure 13). Like DACCS, the primary source of emissions come from energy provision 

for the rock crushing process. And like biochar, there is no provision in the existing IPCC framework 

for the storage of atmospheric CO₂ in dispersed dissolved minerals. 

 

 

Figure 13. Figure 15 from Chiquier et al (2022), "Evolution of the CO₂ removal efficiency of EW over 1000 years for different 
alkaline rock characteristics (i.e., type, composition, or size) and different regions."54 

 

6.4 Ocean NETPs 
Ocean-based NETPs55 present a significant challenge in identifying both the real-life impact of an 

ocean CDR system and accounting for the carbon flows at a jurisdictional level. It is important to 

note that the oceans already naturally remove and store a large fraction of annual CO₂ emissions. 

However according to the IPCC, only removals occurring as the direct result of human action can 

 
53 Kremer, D., Etzold, S., Boldt, J., Blaum, P., Hahn, K. M., Wotruba, H., & Telle, R. (2019). Geological Mapping and Characterization of 

Possible Primary Input Materials for the Mineral Sequestration of Carbon Dioxide in Europe. Minerals, 9(8), 485. MDPI AG. 
http://dx.doi.org/10.3390/min9080485  
54 Chiquier et al (2022). A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & 

Environmental Science. https://doi.org/10.1039/D2EE01021F, used under an open access CC-BY 3.0 license. 
55 Foteinis et al (2022). Life cycle assessment of ocean liming for carbon dioxide removal from the atmosphere. Journal of Cleaner 
Production (370). https://doi.org/10.1016/j.jclepro.2022.133309 
Burns and Corbett (2022). Antacids for the Sea? Artificial Ocean Alkalinization and Climate Change. One Earth, (3)2. 
https://doi.org/10.1016/j.oneear.2020.07.016 
Paschen, Meier, and Rickels. (2021). Accounting for terrestrial and marine carbon sink enhancement. Kiel Working Paper no. 2204.  
https://www.ifw-kiel.de/fileadmin/Dateiverwaltung/IfW-Publications/Wilfried_Rickels/KWP_2204.pdf 
UN (2013). On the Amendment to the London Protocol to Regulate the Placement of Matter for Ocean Fertilization and Other Marine 

Geoengineering Activities. https://www.gc.noaa.gov/documents/resolution_lp_48.pdf  

http://dx.doi.org/10.3390/min9080485
https://doi.org/10.1039/D2EE01021F
https://doi.org/10.1016/j.jclepro.2022.133309
https://doi.org/10.1016/j.oneear.2020.07.016
https://www.ifw-kiel.de/fileadmin/Dateiverwaltung/IfW-Publications/Wilfried_Rickels/KWP_2204.pdf
https://www.gc.noaa.gov/documents/resolution_lp_48.pdf
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count as carbon dioxide removal.  Separating natural removals to human-induced removals is one of 

the key challenges of accounting for ocean CDR. 

Broadly, ocean-based removals entail the addition of nutrients, minerals or biomass in the oceans as 

a way to artificially enhance the rate at which CO₂ is converted into a more stable form of carbon or 

is more quickly brought into deeper layers of the ocean where the CO₂ is likely to remain for 

millennia.   

These are still extremely nascent approaches to CDR, with most of the existing knowledge stemming 

only from academic or lab-scale scientific research. In fact, as a result of international agreements 

such as the Convention on Biological Diversity and the London Convention it is currently only 

possible to deploy these methods of CDR in the context of controlled scientific research. 

Concurrently, due its relative nascency and rare real-life deployment, there is still high uncertainty 

on the impacts its deployment may have on both the climate and on the ecosystems involved.   

At the project level, the quantification the climate effect of the whole deployment chain is difficult. 

The emissions associated with the overall process, such as mining, transport and the various energy 

inputs required are relatively easy to quantify. However, the fundamental challenge remains the 

ability to monitor how much CO₂ has been artificially removed and to reliably assert that it has been 

stored in a body of water which covers over two-thirds of the world’s surface. Therefore, quantifying 

the net CO₂ impact of deploying ocean-based removal is already inherently complicated.  

With jurisdictional accounting layered on top of the project-level accounting issues, the challenge 

becomes doubly complex. As it stands, there is no clear governance framework to regulate the 

deployment of ocean CDR, other than high-level agreements which effectively ban the process for 

non-scientific purposes. This issue is recognised, and a working group exists to further discuss this 

matter. Nevertheless, storing CO₂ in oceans will almost inevitably raise accounting issues across 

territorial waters, along with liability concerns with regards to possible environmental harm and 

reversal of storage.   

One way to address this could be to ensure the country implementing the project remains liable for 

the damage while also claiming the benefit. However, the underlying physical challenges relating to 

potential side-effects and the reliable quantification of permanently removed carbon means 

accounting for ocean-based CDR is unlikely to be resolved in the near future in a manner compatible 

with existing frameworks or with ‘per-tonne-of-CO2’ incentives.  

 

6.5 CDR with storage in stationary biomass stocks 
Afforestation and coastal blue carbon extract CO₂ from the atmosphere by the photosynthesis of 

biomass and the CO₂ is then stored in the above- and below-ground living biomass stocks (Figure 

14). While by their stationary nature, the CO₂ does not travel geographically between extraction and 

storage, transboundary emissions may occur in the supply chains of fuel, fertilizer, and machinery 

inputs, or if increased afforestation leads to indirect land use change elsewhere. 
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Figure 14. Stylised example of greenhouse gas flows in an afforestation system. 

 

Furthermore, even when the supply chains are wholly domestic, global harmonization of accounting 

for emissions and extractions for standing biomass stocks is lacking. While the IPCC territorial 

accounting framework makes necessary concessions to practicality and resources different countries 

have for accounting, CDR accounting requires a more standardized and robust framework to reduce 

uncertainty and bias. This is particularly important if CDR via biomass stocks is used when reporting a 

nation’s total net emissions or otherwise used to, essentially, compensate for residual fossil 

emissions56. 

The impermanent nature of standing biomass requires constant maintenance and monitoring to 

minimise the risk of biomass carbon being re-released into the atmosphere due to forest fires, 

disease, drought, pests, or mismanagement, particularly as a warming climate increases these risks. 

It is this risk of reversal that leads to the low CDR efficiency seen in Figure 15, and creates the same 

accounting challenges as noted with biochar, above.  

Furthermore, reversals of biomass stocks are also not always accounted for, such as if afforestation 

that occurred initially on managed land later becomes “unmanaged land”, any reversal that then 

happens would no longer be consider anthropogenic, and thus not accounted for in national 

inventories.  In the EU framework, this is addressed in the LULUCF accounting rules where under 

some specific circumstances, member states do not need to report emissions from natural 

disturbances (e.g., wildfires, insect and disease infestations, extreme weather events and geological 

disturbances)57.  

 
56 Dooley and Gupta (2017). Governing by expertise: the contested politics of (accounting for) land-based mitigation in a new climate 
agreement. Int Environ Agreements (17). https://doi.org/10.1007/s10784-016-9331-z  
57 EU (2013). DECISION No 529/2013/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2013 on accounting rules on 
greenhouse gas emissions and removals resulting from activities relating to land use, land-use change and forestry and on information 
concerning actions relating to those activities. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN  

https://doi.org/10.1007/s10784-016-9331-z
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0529&from=EN
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Figure 15. Figure 11 from Chiquier et al (2022), "Evolution of the CO₂ removal efficiency of AR over 1000 years for different 
climates and regions."58 

 

 
58 Chiquier et al (2022). A comparative analysis of the efficiency, timing, and permanence of CO₂ removal pathways. Energy & 

Environmental Science. https://doi.org/10.1039/D2EE01021F, used under an open access CC-BY 3.0 license. 

https://doi.org/10.1039/D2EE01021F
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7 RECOMMENDATIONS 

A robust accounting system for CDR needs to answer two questions: “when is a removal a removal?” 

and “whose removal is it?” The question of “when” requires defining CDR; developing 

comprehensive accounting and monitoring methodologies for diverse NETP systems; and addressing 

temporal issues such as impermanence and delays between extraction, storage, and/or associated 

emission. The question of “who” requires agreeing on jurisdictions for accounting for all emissions in 

a CDR system and ensuring that liability is assigned for all of those emissions regardless of when or 

where they occur. These are all matters that become more complicated for NETP systems that cross 

boundaries, particularly as there is an inherent dichotomy between the life cycle accounting 

framework needed to answer the “when is a removal a removal?” and the territorial accounting 

framework used for assessing jurisdiction and liability for (inter)national emissions. Alone, neither is 

sufficient to ensure that CDR is effectively accounted for. 

Improving greenhouse gas accounting for NETP systems has three distinct tasks: addressing existing 

gaps in LCA accounting for CDR; addressing existing gaps in territorial accounting; and creating a 

hybrid accounting framework for CDR that keeps the system perspective for CDR yet assigns 

jurisdiction and liability for the emissions and removals. 

7.1 Addressing Gaps in CDR life cycle accounting 
The most important piece in any potential CDR framework is a clear and robust definition of what is 

carbon dioxide removal. Since the goal of CDR is to reduce atmospheric concentrations of 

greenhouse gases, such a definition must involve the physical extraction of CO₂ from the 

atmosphere, the permanent storage of that CO₂, and the accounting for all associated emissions in 

the extraction and storage processes and associated supply chains so that only net removal is 

considered CDR. For successful development of efficient transboundary CDR system, definition must 

be agreed on an international level. 

Secondly, development is still ongoing for accurate and usable methodologies to measure and 

monitor greenhouse gas flows in heterogenous NETP systems. This includes the development of 

tools to physically measure and increase understanding flows of stored carbon and indirect impacts, 

particularly for disperse carbon storage, such as biochar, enhanced weathering, and ocean CDR. For 

an efficient CDR system to be truly transboundary, these tools must be agreed on an international 

level as well.     

Methodologies for life cycle assessment also need to be specifically tailored to the complexities of 

CDR, including a mandate that only “cradle-to-grave” system boundaries are acceptable for LCA of 

NETP systems.  Other elements not in standard LCA practices but needed for rigorous CDR 

accounting include: 

• ensuring all carbon that enters the system is accounted for from source to sink—carbon 

balances should always close, 

• separate accounting of emissions, extractions, and avoided emissions 

• separate accounting of CO₂ stored in biological sinks and CO₂ stored in geological sinks 

• standardised internalisation of indirect impacts, such as induced changes in land use or 

energy systems, and albedo impacts, 

• explicit accounting of temporal issues and their uncertainties, such as delays between 

emissions and storage, carbon payback period, (the risk of) impermanence 
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• separate treatment and uncertainty analyses for more predictable (e.g., biochar decay rate) 

and less predictable (e.g., forest fires) forms of impermanence. 
 

7.2 Addressing Gaps in territorial accounting 
Unlike life cycle accounting, territorial accounting does not seek to estimate the GHG balance of any 

specific system, but rather the total emissions of a region for a given timeframe. The IPCC accounting 

framework used for the UNFCCC national greenhouse gas inventories accounts for domestic 

emissions of nations, broken down by sector. Before CDR could potentially be incorporated into 

territorial accounting, pertinent gaps in the existing framework need to be addressed, including: 

• accounting for non-biological extraction of CO₂ from the atmosphere 

• accounting for non-geological storage of CO₂ 

• assigning liability for emissions from international transport 

• assigning liability for CO₂ leakage in international waters 

• assigning liability for all re-releases of stored carbon, including ensuring that any carbon sink 

used for CDR can never be considered “unmanaged” or that forfeiture of management is 

assumed to be a reversal 

• separation of reporting of emissions, extractions, and storage of CO₂, instead of reporting 

net changes in flows or stock 

7.3 Merging CDR life cycle accounting with territorial accounting 
Good governance of CDR requires both accurate measurement of greenhouse gas flows throughout 

a CDR system and assigning appropriate liability for those emissions, removals, and risks. 

Furthermore, the CDR accounting framework needs to avoid diluting the purpose of the existing 

territorial framework, which is to provide annual accounting of regional GHG flows. Therefore, a 

transboundary CDR accounting framework may need to sit on top of, or next to the existing 

territorial framework—supplementing, not supplanting or superseding, the territorial framework. 

This is particularly needed as transboundary CDR accounting requires two features that territorial 

accounting does not supply: aggregating flows of greenhouse gases that occur in disparate locations 

and aggregating flows of greenhouse gases that occur across time. 

A framework for transboundary CDR must take into account: 

• all associated emissions of the extraction and storage processes, including intermediate 

transport and conversion and upstream supply chains 

• uniformly high quality of methodologies used for accounting extraction, storage, and 

associated emissions 

• the timing of extractions, storage, and emissions, so that CDR is only accounted for after net 

removal is achieved, including accounting for the “carbon payback period” of indirect 

impacts and land use change 

• liability for reversals and leakage, regardless of when or where they occur 

To determine when net CDR occurs and manage liability of reversals, some aspect of cumulative 

emission accounting may be needed, adding together the emissions and extractions of a CDR system 

as they occur over time. Separation of biological and geological emissions and storage can also help 

clarify the reversal risks and ensure that biologically stored CDR with a high reversal risk is not being 

used to compensate for emissions of greenhouse gases from geological stores. 
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A robust accounting framework is not the only need for successful transboundary governance of 

CDR. CDR is resource intensive, and guardrail regulations are necessary to ensure that CDR does not 

lead to overexploitation or inefficient use of resources such as land, water, and energy. Of particular 

primary concern is the need for explicit CDR targets that sit on top of emission reduction targets—

CDR must never be allowed to cannibalize or slow down the direct reduction of greenhouse gas 

emissions. Other pertinent guardrail regulations include: 

• minimum acceptable CDR efficiencies, to reduce the risk of uncertainties in the system 

leading to “false CDR”, where a CDR system—due to direct or indirect effects—leads to an 

increase in atmospheric greenhouse gas emissions 

• maximum acceptable carbon payback period or an increasing penalty as the payback period 

increases, particularly given the urgency of near-term action to reduce and remove 

emissions.   

• Strict sustainability criteria for biomass, energy, land, water, and other resources used in a 

CDR system. 

In the near term, CDR accounting will be easier for NETP systems with short supply chains, that 

minimise the geographic and temporal distance between extractions, storage, and associated 

emissions, as well as for NETP systems with geological storage that has a low risk of reversal. 

Furthermore, in the absence of a harmonised international governance framework, multilateral 

contracts could be used to negotiate on liability and ownership between actors in a given NETP 

system. To build momentum for robust deployment of CDR, smaller, national scale projects could 

provide the stepping stones for large scale international projects. 



 
 

 44 

 

8 CONCLUSION 

NETP systems are resource-intensive and can have complex supply chains, involving the transport of 

biomass, CO₂, energy, and other materials across international boundaries. They also vary in the 

time between extraction and storage of CO₂, and emissions associated with the extraction and 

storage processes and their supply chains, as well as the risk of re-releasing stored carbon over time.  

Existing accounting frameworks are not yet adequate for large-scale implementation of NETPs. 

There are several types of gaps remaining: no international agreement on a robust definition of 

negative emissions; high uncertainties of the behaviour of carbon flows over time for disperse 

storage for biochar and enhanced weathering; lack of clearly decomposed metrics that clearly 

account for emissions and extractions, including separation of biogenic and geologic carbon; lack of 

liability for emissions from international transport or unmanaged land; and a lack of treatment in 

territorial accounting of non-biologic extraction of atmospheric CO₂ and storage not in geologic 

reservoirs or biomass stocks. 

Developing a robust accounting framework for NETPs is as fundamental as developing the NETPs 

themselves. While the NETPs aim to physically reduce atmospheric concentrations of greenhouse 

gases, accounting frameworks ensure that a NETP system leads to a real reduction in atmospheric 

GHG and measure what that reduction is. The most critical component is a reliance on tracking 

physical flows of carbon and ensuring that all greenhouse gases associated with an NETP system are 

both counted. A system to assign liability for these flows should not lead to direct alternation of 

territorial inventories, but rather stand beside those inventories, to avoid obscuring where 

extractions and emissions occur. 

Transboundary greenhouse gas accounting for NETPs needs to keep all these goals in mind. It 

requires comprehensive and science-based measurement modelling of physical flows of greenhouse 

gases. It requires that liability for emissions and removals are fully and fairly assigned. It must not 

obscure or hinder the progress of rapid and massive reduction of emissions. And it must not 

discount indirect or future impacts that our children will then have to suffer the consequences of.  
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