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Factors that influence the domestic CO, removal potential

BECCS

Biochar

Afforestation

Enhanced
Weathering

DACCS

Potential is function of types of biomass feedstocks and their availabilities.
Technology archetypes and the CO, capture rates. Emissions from processing in the
supply chain. CO, sequestration potential.

Very similar to the list for BECCS. Scale- and output-dependent constraints and highly %
variable based on method of production. Soil and environment conditions.

Depends on forest management and the type of land used — new land or land with ?
reforestation potential? Indirect emissions from energy and supply chain. th

Availability of basic rock formations. Indirect emissions from energy and equipment. *
Particle size and weathering rates. Soil characteristics. IR

Technology archetypes — requires different energy sources, e.g., electricity and/or low
temperature heat, high temperature heat. Depends on availability of low carbon @E
energy sources and CO, sequestration potential.
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Electricity Systems Optimisation (ESO) Framework
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UK Case study: Impact of CDR deployment on the electricity grid

All CDR
technologies &
Low biomass
availability

All CDR
technologies &
High biomass
availability

Source: A. Prado, S. Chiquier, M. Fajardy and N. Mac Dowell, (2023), Assessing the impact of carbon dioxide removal on the power system
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CDR target: 90 MtCO, removal by 2050

In the limited biomass
scenario, BECCS delivers
up to 46 Mt CO,, per year
of removal by 2050.

With increased biomass
availability, more BECCS
is deployed, reducing the
share of DACS.

AF is limited by anticipated
plantation rates. EW is
limited by rock availability,
type and particle size.

DACS is deployed after
other CDR options have
reach their maximum
potential (i.e., DACS is
used last).

.iScience, 26, 106303. https://doi.org/10.1016/].isci.2023.106303



MONET-JEDI: Evaluating the socio-economic impacts of CDR deployment
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Mai Bui, Nixon Sunny, Solene Chiquier, Piera Patrizio, Niall Mac Dowell, (2024). NEGEM Report for Task 7.4 Quantify the socio-economic value of intra-European collaboration.
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MONET-JEDI: Evaluating the socio-economic impacts of CDR deployment
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Conclusions: WP4 & WP7 key insights @

Effect of CDR deployment on the power system
Potential synergies between CDR options and the power sector (e.g., BECCS an energy producer,
whereas DAC and EW are energy consumers) are explored with the MONET-ESO modelling system.

BECCS is limited by biomass availability (national and imports). In the limited biomass scenario, BECCS
delivers up to 46 Mt CO, per year of removal by 2050.

DAC is deployed after all other CDR reach their maximum potential (i.e., DAC is used last).
AF is limited by anticipated plantation rates.
Dispatchable, low carbon power is needed to balance intermittent renewables (e.g., BECCS or CCGT).

BECCS displaces natural gas with CCS by up to 4 times & intermittent renewables by up to 10%.

Socio-economic impacts of CDR deployment
Cost case study — greater deployment of biomass-based CDR is expected to increase direct value
added (DVA) in the agricultural and forestry sectors. Average cost of removal in 2100 is at $240/tCO,.

Jobs case study — increased levels of DAC results in high average cost of removal at $529/tCO, by 2100.
Significant increase in GVA and jobs compared to the “Cost” case study (manufacturing and
construction).
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